La nutrizione in gravidanza e i perturbatori endocrini: 13 consigli per iniziare a riprenderci il futuro
- dietistalugli
- 25 ott 2024
- Tempo di lettura: 37 min

Nel 1996 in USA uscì un libro di grande successo, dal titolo che in italiano suona più o meno “Il nostro futuro rubato: stiamo minacciando la nostra fertilità, intelligenza e sopravvivenza?” di Theo Colborn, Dianne Dumanoski e John Peterson Myers. Il libro racconta lo sviluppo della teoria degli interferenti endocrini da parte dello stesso Colborn. Anche se è un testo divulgativo destinato al grande pubblico, il libro contiene una notevole quantità di prove scientifiche. Una prefazione dell'allora vicepresidente americano Al Gore aumentò la visibilità del libro, che ha persino influenzato la politica del governo attraverso udienze al Congresso e ha contribuito a promuovere lo sviluppo di un’iniziativa di ricerca e regolamentazione all’interno dell’Agenzia per la protezione ambientale degli Stati Uniti (EPA).
Da allora sono stati pubblicati migliaia di articoli scientifici sulle alterazioni da interferenti endocrini, oggi ne sappiamo molto di più e le conoscenze scientifiche ci sono: che sia giunto il momento di riprenderci questo futuro?
Se sei in gravidanza ci sono cose che ti avranno ripetuto fino alla noia: l’apporto proteico, l’aumento di peso controllato, l’acido folico, gli omega 3, l’apporto di calcio, la vitamina D, le tossinfezioni...Tutte cose giuste e importantissime, sgombriamo il campo da possibili equivoci. Qualunque professionista che vi segue per la nutrizione in gravidanza DEVE pianificare con voi i fabbisogni nutrizionali, l'apporto proteico e di acidi grassi polinsaturi, l'eventuale integrazione di vitamine e minerali, l'ottimizzazione del controllo glicemico, la prevenzione delle tossinfezioni. Per fortuna questo in genere succede, e la maggior parte delle future mamme si rende perfettamente conto che è importante seguire queste indicazioni.
Quello che spesso non sa (e non per colpa sua ma perché non è stata informata) è che ci sono anche altri fattori da tenere in considerazione, e che possono fare tutta la differenza del mondo per la salute del futuro individuo. Ce ne sono diversi, come ad esempio il microbiota, che oggi sappiamo essere il centro della nostra salute – ricordiamo che il microbiota si eredita sempre dalla madre, e che il momento chiave per il trasferimento verticale è proprio il parto, insieme all'allattamento. Dedicherò presto un altro post a questo argomento, ma oggi partiamo da un altro aspetto fondamentale, che è stato definito “la minaccia invisibile”: i perturbatori endocrini, detti anche POP (Persistent Organic Pollutants, inquinanti organici persistenti).
Un tema che dovrebbe essere totalmente centrale per chi si occupa di gravidanza, come sottolinea nientemeno che l'American College of Obstetricians and Gynecologists:

“Le esposizioni tossiche legate alla salute riproduttiva e dello sviluppo sono state associate principalmente a infertilità e aborto spontaneo, esiti ostetrici come parto pretermine e basso peso alla nascita, ritardo dello sviluppo neurologico come autismo e disturbo da deficit di attenzione e iperattività e cancro negli adulti e nei bambini. (…) Gli incontri clinici offrono l’opportunità di esaminare e consigliare i pazienti durante la gravidanza e il periodo prenatale sulle opportunità per ridurre le esposizioni tossiche per la salute ambientale.” si legge in un documento ufficiale dell'ordine dei ginecologi americani. In estrema sintesi, stiamo parlando di sostanze esogene che alterano la funzionalità del sistema endocrino, causando effetti avversi sulla salute di un organismo.
I POP possono avere diverse origini: cibo, acqua, contaminanti domestici... E possono legarsi ai recettori per gli ormoni, andando a interferire con tutti quei processi biologici che sono guidati dagli ormoni. E vi assicuro che sono tanti, e importanti.
Non vi tedio con gli elenchi delle molecole e i meccanismi d'azione, e non mi dilungo a presentarvi queste sostanze perché ho già pubblicato un post introduttivo sul tema che vi consiglio di leggere, a questo link: https://www.sebastianlugli.it/approfondimenti/pop-matters-interferenti-endocrini
Veniamo al dunque: come potete facilmente intuire, il feto per le sue caratteristiche fisiologiche è particolarmente sensibile ed esposto ai rischi da contaminazione alimentare e non.
La radice di molti problemi di salute infantile come l’autismo o le difficoltà di apprendimento, così come le malattie che si manifestano in età adulta, come il diabete, alterazioni della tiroide, l'obesità, il cancro e persino l’Alzheimer, possono avere le loro radici nelle esposizioni chimiche prenatali.
L’esposizione a determinate influenze ambientali durante lo sviluppo fetale e neonatale può avere conseguenze significative sulla salute a lungo termine di un individuo.
Per cominciare l’equilibrio ormonale è fondamentale per la crescita e lo sviluppo del feto e del bambino: pensiamo al ruolo di estrogeni e testosterone per il corretto sviluppo sessuale e la pubertà, o della tiroide per lo sviluppo cerebrale. Lo stesso inquinante endocrino può indurre effetti molto diversi nei maschi e nelle femmine, perciò la valutazione degli inquinanti endocrini deve tenere conto della vulnerabilità legata all’età ed al sesso. I danni prodotti da queste sostanze sono confermati da ricerche mediche che indicano che le persone più esposte hanno un maggiore rischio di patologie riproduttive (infertilità, abortività, endometriosi, ecc.), di disturbi comportamentali nell’infanzia, e secondo gli ultimi studi anche di diabete e di alcuni tipi di cancro (testicolo, mammella, etc.).
Ma c’è dell’altro: il feto in via di sviluppo, se esposto ad un ambiente uterino ostile (ad esempio per cattiva alimentazione, infezioni, sostanze chimiche, metaboliti o perturbazioni ormonali), risponde sviluppando adattamenti a lungo termine, tanto impercettibili quanto irreversibili, nella struttura e nella funzione di alcuni tessuti e organi vitali (timo, muscolo scheletrico, polmoni, pancreas, rene) a seguito di modificazioni dell’espressione genica, differenziazione e proliferazione cellulare. Una volta nato e a contatto con l’ambiente esterno, il bambino può quindi essere predisposto a un rischio maggiore di alcune malattie non trasmissibili (NCD).
Tra l'altro questi cambiamenti epigenetici sono anche trasmissibili in via ereditaria, quindi l’esposizione della madre a un inquinante produce effetti addirittura per 3 generazioni!

DOMANDA: ma chi ha detto che queste sostanze vengano assorbite?
Be', diversi studi lo hanno dimostrato. Per esempio studi sui cordoni ombelicali compiuti in tutto il mondo occidentale hanno mostrato ovunque livelli di PCB (uno di questi perturbatori endocrini) molto alti, tali da avere effetti molto negativi.
Ma anche più vicino a noi, uno studio fatto in Italia ha evidenziato la presenza del diesil-etilftalato (idem) nel sangue materno e nel cordone ombelicale.
Già dosi molto piccole di perturbatori endocrini possono avere un impatto enorme sulla salute. Il che non dovrebbe stupire: gli ormoni nel corpo funzionano già a concentrazioni infinitesimali, nell'ordine delle parti per trilione (mille volte meno di una parte per miliardo, un milione di volte meno di una parte per milione), tanto che i dosaggi ormonali nel sangue sono tecnicamente complessi perché non è facile misurare con precisione quantità così piccole.
E queste sostanza non sono altro che dei “falsi ormoni” che ingannano i nostri recettori e, in parole povere, mandano in confusione il nostro sistema endocrino.
Peraltro esiste un fenomeno noto come “effetto cocktail” per cui, esponendosi a diverse di queste sostanze contemporaneamente, gli impatti negativi non si sommano in modo lineare ma si amplificano (1+1=3).
Entriamo un attimo nel concreto, cito solo qualche esempio tra i tanti: già dagli anni '60 del secolo scorso era noto che alcuni pesticidi possedessero un'attività estrogenica, e tra gli anni '80 e '90 alcuni studi hanno dimostrato che un noto pesticida era in grado di provocare obesità nei ratti, e alterazioni nello sviluppo sessuale nei pesci e negli uccelli. In seguito, dati raccolti sia in laboratorio che su specie selvatiche hanno mostrato lo stesso effetto su vari tipi di vertebrati.
Oggi la letteratura scientifica ha dimostrato che i bambini esposti a perturbatori endocrini durante la vita fetale hanno un’aumentata prevalenza di criptorchidismo e ipospadia (problematiche dello sviluppo genitale maschile).
Diversi inquinanti endocrini sono stati associati ad una alterazione dell’esordio puberale sia in senso ritardato che anticipato, che a sua volta si associa a tante malattie.
Nel 2000 sono state studiate a Porto Rico le ragazze con telarca precoce e nel 68% del campione sono stati identificati livelli elevati, in maniera statisticamente significativa rispetto ai controlli, di ftalati, di probabile origine alimentare. Gli ftalati non sono una singola sostanza ma una intera classe di sostanze chimiche.
Si trovano in molti tipi di plastica, negli alimenti (a causa degli imballaggi alimentari e delle apparecchiature di produzione in plastica), nei detergenti domestici, nei prodotti per la cura personale, nel trucco, nei prodotti per il bucato, nei prodotti farmaceutici, persino nelle attrezzature ospedaliere come tubi e sacche per il sangue, impermeabili, ecc. indumenti, fili e cavi e altro ancora.
Vi rendete dunque conto di quanto l'ambiente domestico e il cibo siano potenziali di esposizione pericolosa per l'equilibrio ormonale dei nostri figli. E non solo, dato che l'esposizione agli ftalati è stata anche associata a:
- Diabete di tipo II e insulino-resistenza
- Sovrappeso/obesità
- Cancro al seno (nota: più di 900 perturbatori endocrini sono stati identificati come cause di cancro al seno)
- Allergie e asma
- Problemi riproduttivi di varia natura (dall'endometriosi all'ovaio policistico, all'infertilità e alla femminizzazione dei maschi)
E vogliamo parlare degli PFAS?
Noti perturbatori endocrini e modulatori epigenetici, sono contenuti ad esempio nelle padelle antiaderenti (Teflon®) e negli indumenti impermeabilizzati (come Gore-Tex®) nonchè nei prodotti per la pulizia dei pavimenti e detersivi in genere; nei contenitori di alimenti (ad esempio nei fast food), negli shampoo, nei dentifrici e molto altro. Particolarmente critico è l’uso delle PFAS e altri interferenti endocrini nei contenitori per alimenti, dai quali possono essere facilmente rilasciati ai cibi in essi contenuti. E' facilmente dimostrabile che gli PFAS sono presenti in tutta la catena alimentare.

Tra le patologie che in letteratura risultano associate all'esposizione a PFAS, figurano:
Cancro del rene
Cancro del testicolo
Malattie della tiroide
Ipercolesterolemia
Colite ulcerosa
Ipertensione gravidica/preeclampsia
Questi erano solo un paio di esempi, ce ne sarebbero tantissimi altri ma lo scopo qui non è tanto fare una rassegna della letteratura scientifica, quanto piuttosto darvi qualche piccolo strumento concreto per iniziare a migliorare la vita dei vostri figli. Ci sono tantissime altre sostanze di questo tipo, alcune addirittura contenute naturalmente in alcuni vegetali.
Anche se non possiamo mai evitare l'esposizione totale ai POP, possiamo lavorare per ridurre al minimo l'esposizione nel maggior numero di posti possibile...Si sa che il meglio è nemico del bene, e a volte bisogna accontentarsi di migliorare le cose senza pretendere per forza la perfezione.
DOMANDA: ok, dove si trovano queste sostanze e come evitarle?
Sono state identificate più di 1.400 sostanze con effetto di perturbazione endocrina, e ogni giorno siamo esposti a diverse decine di esse: non sarebbe possibile spiegare tutto questo in un singolo post, e forse non basterebbe nemmeno un libro. Per questo serve il supporto personalizzato di un professionista che conosca bene il tema e abbia fatto ricerca per voi su quali materiali utilizzare, come sostituire quelli tossici, come evitare che il feto sia esposto a influenze pericolose per il suo futuro, senza per questo dover dedicare ore a infruttuose ricerche.
Qualcuno che non abbia protocolli precostituiti, ma che parta dalla vostra realtà concreta, analizzando con voi tutte le possibili fonti di esposizione nella vostra casa e nella vostra routine quotidiana.
SEMPLICI CAMBIAMENTI NEL PROPRIO STILE DI VITA POSSONO RISULTARE IN UNA DIMINUZIONE MISURABILE DELL'ESPOSIZIONE A MOLTI PERTURBATORI ENDOCRINI.
Uno studio del 2022 pubblicato su Environment International ha dimostrato che un percorso di supporto personalizzato da parte di professionisti che analizzavano le personali fonti di esposizione delle pazienti e fornivano consigli personalizzati per limitarle, determinava una diminuzione significativa dei livelli di perturbatori endocrini di queste persone.
Per questo ci tengo moltissimo ad accompagnare le donne in gravidanza che seguo non solo dal punto di vista della nutrizione stricto sensu, ma in tutto quello che è la loro vita quotidiana che disegna le esposizioni ambientali del nuovo individuo. Dopo tutto, dieta in senso etimologico significa “stile di vita”.
Già dalla prima visita mi prendo tutto il tempo necessario per fare molte domande sulla vita in casa e fuori, le abitudini alimentari, i materiali utilizzati in cucina, i prodotti che si scelgono per l'igiene personale e domestica e molto altro. Tutto ciò necessita di un grado di approfondimento e personalizzazione che si verifica solo nel rapporto 1:1 del percorso nutrizionale.
Nel frattempo vorrei lasciarvi però con qualche consiglio veloce che vi permetta di migliorare da subito il vostro esposoma (parolaccia tecnica che significa semplicemente l'insieme di tutto ciò a cui si è esposti), migliorando dunque immediatamente il destino genetico delle creature che portate in grembo.
E' davvero solo la punta dell'iceberg, ci sono migliaia di altri aspetti che andrebbero approfonditi, ma si sa che ogni grande impresa comincia con un piccolo passo e sta solo a voi decidere se accontentarvi di questo o investire energie per scrivergli un futuro di salute veramente migliore.
Evita il più possibile gli alimenti processati industrialmente. Cerca di mangiare più spesso a casa piatti preparati da te o da persone della tua famiglia, di cui conosci gli ingredienti e gli strumenti usati per prepararli
Non mettere in contenitori in plastica (tipo Tupperware) alimenti e bevande che siano grassi (tutto ciò che contiene oli o burro, carni grasse, pesce grasso, salumi, cioccolato, frutta secca...), né alimenti caldi, né acidi. Quando possibile, scegliere sempre contenitori di vetro per conservare i tuoi avanzi.
Mangiare pesce 3 volte a settimana è importante per l'aumentato fabbisogno di DHA, ma attenzione ai pesci contaminati da molti perturbatori endocrini. In generale i più contaminati sono i pesci di taglia più grande, come tonno e pesce spada, per via della biomagnificazione. Ma attenzione anche ai pesci di fondale come la triglia. Al contrario, i migliori sono i pesci pescati di piccole dimensioni come alici e sardine.
Limitare l’utilizzo di utensili da cottura antiaderenti, specie se il rivestimento è usurato. Un solo graffio in una padella antiaderente può rilasciare in 30 secondi fino a 9000 particelle di PFAS, e un rivestimento rovinato 2 milioni di nanoparticelle. Usa pentolame integro, e dove possibile scegli materiali come acciaio, ghisa, ferro, titanio, acciaio al carbonio.

Grazie Associazione Medici per l'Ambiente Evitare la pellicola per alimenti a contatto con gli alimenti, specie se sono grassi (tutto ciò che contiene oli o burro, carni grasse, pesce grasso, salumi, cioccolato, frutta secca...) o caldi. Leggere con attenzione l'etichetta della pellicola che acquistate.
Durante la cottura dei cibi garantire un’adeguata ventilazione dei locali
Evitare la combustione di incensi e candele profumate, e attenzione a deodoranti e profumatori per ambienti
Fare molta attenzione agli involucri lacerati e/o usurati degli oggetti con imbottitura in schiuma (sedili dell’auto, materassi, divani ecc.). Specie se sono stati prodotti prima del 2012, la schiuma potrebbe essere molto tossica: considera di cambiarli.
Nella scelta di materiale per la casa limitare l’uso di PVC morbido contenente DEHP
Per cucinare evita gli utensili di plastica. Scegli piuttosto legno o metallo.
Scegli teglie da forno di vetro Pirex, da evitare anche qui l'antiaderente
Confrontati con un professionista che abbia approfondito la tematica degli inquinanti ambientali per scegliere in modo mirato la frequenza di consumo delle diverse fonti proteiche
Se hai una tenda della doccia di plastica vinilica, rimpiazzala di frequente e considera di sostituirla con altri materiali, perché a contatto con l'acqua calda rilascia molti perturbatori endocrini.
Dott. Sebastian Lugli
Per consulenze e percorsi personalizzati (anche online):
dietista.lugli@gmail.com 349 5089964
Alcuni riferimenti bibliografici (in aggiornamento)
1 Buck RC, Franklin J, Berger U, Conder JM, Cousins IT, de Voogt P, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr Environ Assess Manag 2011; 7:513–541.
2 Minoia C, Leoni E, Sottani C, Biamonti G, Signorini S, Imbriani M. [Perfluorooctane sulfonic acid and perfluorooctanoic acid]. G Ital Med Lav Ergon 2008; 30:309–323.
3 Post GB, Cohn PD, Cooper KR. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environ Res 2012; 116:93–117.
4 OECD Portal on Per and Poly Fluorinated Chemicals - OECD Portal on Per and Poly Fluorinated Chemicals. 2018.http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/ (accessed 20 Nov2017).
5 Riddell N, Arsenault G, Benskin JP, Chittim B, Martin JW, McAlees A, et al. Branched perfluorooctane sulfonate isomer quantification and characterization in blood serum samples by HPLC/ESI-MS(/MS). Environ Sci Technol 2009; 43:7902–7908.
6 Rayne S, Forest K. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2010; 45:432–446.
7 Paiano V, Fattore E, Carrà A, Generoso C, Fanelli R, Bagnati R. Liquid chromatography-tandem mass spectrometry analysis of perfluorooctane sulfonate and perfluorooctanoic Acid in fish fillet samples.
J Anal Methods Chem 2012; 2012:719010.
8 Trojanowicz M, Koc M. Recent developments in methods for analysis of perfluorinated persistent pollutants. Microchim Acta 2013; 180:957–971.
9 Weiss J, de Boer J, Berger U, Muir D, Ruan T, Torre A, et al. PFAS analysis in water for the Global Monitoring Plan of the Stockholm Convention. 2015; :35.
10 Martin JW, Kannan K, Berger U, de Voogt P, Field J, Franklin J, et al. Analytical challenges hamper perfluoroalkyl research. Environ Sci Technol 2004; 38:248A-255A.
11 Maestri L, Negri S, Ferrari M, Ghittori S, Fabris F, Danesino P, et al. Determination of perfluorooctanoic acid and perfluorooctanesulfonate in human tissues by liquid chromatography/single quadrupole mass spectrometry. Rapid Commun Mass Spectrom RCM 2006; 20:2728–2734.
12 Cordiano V. Dottore, ho fatto gli esami per i PFAS nel sangue. Cosa vuol dire? Sito
Vincenzocordianoit. 2017.http://www.vincenzocordiano.it/2017/11/15/dottore-gli-esami-pfas-nel-sanguecosa-vuol-dire/ (accessed 30 Nov2018).
13 Kennedy GL, Butenhoff JL, Olsen GW, O’Connor JC, Seacat AM, Perkins RG, et al. The toxicology of perfluorooctanoate. Crit Rev Toxicol 2004; 34:351–384.
14 Negri S, Maestri L, Esabon G, Ferrari M, Zadra P, Ghittori S, et al. Caratteristiche, uso e tossicità dei fluorurati: revisione della letteratura. G Ital Med Lav Ergon 2008; 30:61–74.
15 Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci Off J Soc Toxicol 2007; 99:366–394.
16 Trier X, Granby K, Christensen JH. Polyfluorinated surfactants (PFS) in paper and board coatings for food packaging. Environ Sci Pollut Res Int 2011; 18:1108–1120.
17 Rosenmai AK, Taxvig C, Svingen T, Trier X, van Vugt-Lussenburg BMA, Pedersen M, et al. Fluorinated alkyl substances and technical mixtures used in food paper-packaging exhibit endocrinerelated activity in vitro. Andrology 2016; 4:662–672.
18 Kissa E. FLUORINATED SURFACTANTS AND REPELLENTS. 2nd ed. New York: Marcel Dekker, Inc; 2001.
19 Lau C. Perfluorinated Compounds: An overview. In: Toxilogical Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. De Witt, JC (editor). . Humana Press; 2015. pp. 1--21.
20 Ahrens L. Polyfluoroalkyl compounds in the aquatic environment: a review of their occurrence and fate. J Environ Monit JEM 2011; 13:20–31.
21 Begley TH, White K, Honigfort P, Twaroski ML, Neches R, Walker RA. Perfluorochemicals: potential sources of and migration from food packaging. Food Addit Contam 2005; 22:1023–1031. 22 Domingo JL. Health risks of dietary exposure to perfluorinated compounds. Environ Int 2012; 40:187–195.
23 European Food Safety Authority. Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA J 2012; 10. doi:10.2903/j.efsa.2012.2743
24 OECD/UNEP Global PFC Group. Synthesis paper on per- and polyfluorinated chemicals (PFCs).
2013.
25 Butt CM, Muir DCG, Mabury SA. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: a review. Environ Toxicol Chem 2014; 33:243–267.
26 Dinglasan MJA, Ye Y, Edwards EA, Mabury SA. Fluorotelomer alcohol biodegradation yields poly- and perfluorinated acids. Environ Sci Technol 2004; 38:2857–2864.
27 Sources of Exposure to PFAS | Perfluorinated chemicals (PFCs) | ATSDR.
2017.https://www.atsdr.cdc.gov/pfc/sources_of_exposure.html (accessed 18 Oct2017).
28 Ahrens L, Bundschuh M. Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environ Toxicol Chem 2014; 33:1921–1929.
29 Giesy JP, Kannan K. Global distribution of perfluorooctane sulfonate in wildlife. Environ Sci Technol 2001; 35:1339–1342.
30 Giesy JP, Kannan K. Perfluorochemical surfactants in the environment. Environ Sci Technol 2002; 36:146A-152A.
31 Giesy JP, Kannan K, Jones PD. Global Biomonitoring of Perfluorinated Organics. Sci World J 2001; 1:627–629.
32 Audet-Delage Y, Ouellet N, Dallaire R, Dewailly E, Ayotte P. Persistent organic pollutants and transthyretin-bound thyroxin in plasma of Inuit women of childbearing age. Environ Sci Technol 2013; 47:13086–13092.
33 Armitage J, Cousins IT, Buck RC, Prevedouros K, Russell MH, MacLeod M, et al. Modeling Global-Scale Fate and Transport of Perfluorooctanoate Emitted from Direct Sources. Environ Sci Technol 2006; 40:6969–6975.
34 Gomis MI, Wang Z, Scheringer M, Cousins IT. A modeling assessment of the physicochemical properties and environmental fate of emerging and novel per- and polyfluoroalkyl substances. Sci Total Environ 2015; 505:981–991.
35 Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH. Sources, Fate and Transport of Perfluorocarboxylates. Environ Sci Technol 2006; 40:32–44.
36 Vierke L, Staude C, Biegel-Engler A, Drost W, Schulte C. Perfluorooctanoic acid (PFOA) — main concerns and regulatory developments in Europe from an environmental point of view. Environ Sci Eur 2012; 24:16.
37 Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect 2007; 115:1298–1305.
38 Pérez F, Nadal M, Navarro-Ortega A, Fàbrega F, Domingo JL, Barceló D, et al. Accumulation of perfluoroalkyl substances in human tissues. Environ Int 2013; 59:354–362.
39 Bischel HN, Macmanus-Spencer LA, Zhang C, Luthy RG. Strong associations of short-chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms. Environ Toxicol Chem 2011; 30:2423–2430.
40 Luebker DJ, Hansen KJ, Bass NM, Butenhoff JL, Seacat AM. Interactions of flurochemicals with rat liver fatty acid-binding protein. Toxicology 2002; 176:175–185.
41 DeWitt JC, Peden-Adams MM, Keller JM, Germolec DR. Immunotoxicity of Perfluorinated Compounds: Recent Developments. Toxicol Pathol 2012; 40:300–311.
42 Abbott BD. Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol Elmsford N 2009; 27:246–257.
43 Ferré P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 2004; 53 Suppl 1:S43-50.
44 Elangbam CS, Tyler RD, Lightfoot RM. Peroxisome Proliferator-activated Receptors in Atherosclerosis and Inflammation—An Update. Toxicol Pathol 2001; 29:224–231.
45 Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999; 10:245–257.
46 Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors with functions in the vascular wall. Z Kardiol 2001; 90 Suppl 3:125–132.
47 Delerive P, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors in inflammation control. J Endocrinol 2001; 169:453–459.
48 Marx N, Duez H, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res 2004; 94:1168–1178.
49 Peden-Adams MM, EuDaly JG, Dabra S, EuDaly A, Heesemann L, Smythe J, et al. Suppression of Humoral Immunity Following Exposure to the Perfluorinated Insecticide Sulfluramid. J Toxicol Environ Health A 2007; 70:1130–1141.
50 Wang X, Liu L, Zhang W, Zhang J, Du X, Huang Q, et al. Serum metabolome biomarkers associate low-level environmental perfluorinated compound exposure with oxidative /nitrosative stress in humans. Environ Pollut 2017; 229:168–176.
51 López-Arellano P, López-Arellano K, Luna J, Flores D, Jiménez-Salazar J, Gavia G, et al. Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries. Environ Toxicol 2019; 34:92–98.
52 Suh KS, Choi EM, Kim YJ, Hong SM, Park SY, Rhee SY, et al. Perfluorooctanoic acid induces oxidative damage and mitochondrial dysfunction in pancreatic β-cells. Mol Med Rep 2017; 15:3871–3878. 53 Filgo AJ, Quist EM, Hoenerhoff MJ, Brix AE, Kissling GE, Fenton SE. Perfluorooctanoic Acid (PFOA)-induced Liver Lesions in Two Strains of Mice Following Developmental Exposures: PPARα Is Not Required. Toxicol Pathol 2015; 43:558–568.
54 Bjork JA, Butenhoff JL, Wallace KB. Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 2011; 288:8–17.
55 Abbott BD, Wolf CJ, Das KP, Zehr RD, Schmid JE, Lindstrom AB, et al. Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR alpha) in the mouse. Reprod Toxicol Elmsford N 2009; 27:258–265.
56 Heuvel V, P J, Thompson JT, Frame SR, Gillies PJ. Differential Activation of Nuclear Receptors by Perfluorinated Fatty Acid Analogs and Natural Fatty Acids: A Comparison of Human, Mouse, and Rat Peroxisome Proliferator-Activated Receptor-α, -β, and -γ, Liver X Receptor-β, and Retinoid X Receptor-α.
Toxicol Sci 2006; 92:476–489.
57 Rosen MB, Lee JS, Ren H, Vallanat B, Liu J, Waalkes MP, et al. Toxicogenomic dissection of the perfluorooctanoic acid transcript profile in mouse liver: evidence for the involvement of nuclear receptors PPAR alpha and CAR. Toxicol Sci Off J Soc Toxicol 2008; 103:46–56.
58 Zhao B, Lian Q, Chu Y, Hardy DO, Li X-K, Ge R-S. The inhibition of human and rat 11βhydroxysteroid dehydrogenase 2 by perfluoroalkylated substances. J Steroid Biochem Mol Biol 2011; 125:143–147.
59 Rosen MB, Thibodeaux JR, Wood CR, Zehr RD, Schmid JE, Lau C. Gene expression profiling in the lung and liver of PFOA-exposed mouse fetuses. Toxicology 2007; 239:15–33.
60 Xin Y, Wan B, Yang Y, Cui X-J, Xie Y-C, Guo L-H. Perfluoroalkyl acid exposure induces protective mitochondrial and endoplasmic reticulum autophagy in lung cells. Arch Toxicol 2018; 92:3131–3147.
61 Guruge KS, Yeung LWY, Yamanaka N, Miyazaki S, Lam PKS, Giesy JP, et al. Gene Expression Profiles in Rat Liver Treated With Perfluorooctanoic Acid (PFOA). Toxicol Sci 2006; 89:93–107. 62 Liu C, Du Y, Zhou B. Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes.
Aquat Toxicol Amst Neth 2007; 85:267–277.
63 Qazi MR, Abedi MR, Nelson BD, DePierre JW, Abedi-Valugerdi M. Dietary exposure to perfluorooctanoate or perfluorooctane sulfonate induces hypertrophy in centrilobular hepatocytes and alters the hepatic immune status in mice. Int Immunopharmacol 2010; 10:1420–1427.
64 Strömqvist M, Olsson JA, Kärrman A, Brunström B. Transcription of genes involved in fat metabolism in chicken embryos exposed to the peroxisome proliferator-activated receptor alpha (PPARα) agonist GW7647 or to perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA). Comp Biochem Physiol Toxicol Pharmacol CBP 2012; 156:29–36.
65 Hickey NJ, Crump D, Jones SP, Kennedy SW. Effects of 18 perfluoroalkyl compounds on mRNA expression in chicken embryo hepatocyte cultures. Toxicol Sci Off J Soc Toxicol 2009; 111:311–320. 66 Leter G, Consales C, Eleuteri P, Uccelli R, Specht IO, Toft G, et al. Exposure to perfluoroalkyl substances and sperm DNA global methylation in Arctic and European populations. Environ Mol Mutagen 2014; 55:591–600.
67 Tian M, Peng S, Martin FL, Zhang J, Liu L, Wang Z, et al. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells. Toxicology 2012; 296:48–55.
68 Jensen AA, Leffers H. Emerging endocrine disrupters: perfluoroalkylated substances. Int J Androl 2008; 31:161–169.
69 Foresta C, Tescari S, Di Nisio A. Impact of perfluorochemicals on human health and reproduction: a male’s perspective. J Endocrinol Invest 2018; 41:639–645.
70 Di Nisio AD, Sabovic I, Valente U, Tescari S, Rocca MS, Guidolin D, et al. Endocrine disruption of androgenic activity by perfluoroalkyl substances: clinical and experimental evidence. J Clin Endocrinol 2018; :22.
71 Uzumcu M, Zachow R. Developmental Exposure to Environmental Endocrine Disruptors: Consequences within the Ovary and on Female Reproductive Function. Reprod Toxicol Elmsford N 2007; 23:337–352.
72 Davis KL, Aucoin MD, Larsen BS, Kaiser MA, Hartten AS. Transport of ammonium perfluorooctanoate in environmental media near a fluoropolymer manufacturing facility. Chemosphere 2007; 67:2011–2019.
73 Shin H-M, Vieira VM, Ryan PB, Steenland K, Bartell SM. Retrospective exposure estimation and predicted versus observed serum perfluorooctanoic acid concentrations for participants in the C8 Health Project. Environ Health Perspect 2011; 119:1760–1765.
74 Steenland K, Jin C, MacNeil J, Lally C, Ducatman A, Vieira V, et al. Predictors of PFOA Levels in a Community Surrounding a Chemical Plant. Environ Health Perspect 2009; 117:1083–1088.
75 Post GB, Louis JB, Cooper KR, Boros-Russo BJ, Lippincott RL. Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems.
Environ Sci Technol 2009; 43:4547–4554.
76 Sinclair E, Kannan K. Mass loading and fate of perfluoroalkyl surfactants in wastewater treatment plants. Environ Sci Technol 2006; 40:1408–1414.
77 Kim S-K, Lee KT, Kang CS, Tao L, Kannan K, Kim K-R, et al. Distribution of perfluorochemicals between sera and milk from the same mothers and implications for prenatal and postnatal exposures.
Environ Pollut Barking Essex 1987 2011; 159:169–174.
78 Moody CA, Hebert GN, Strauss SH, Field JA. Occurrence and persistence of
perfluorooctanesulfonate and other perfluorinated surfactants in groundwater at a fire-training area at Wurtsmith Air Force Base, Michigan, USA. J Environ Monit JEM 2003; 5:341–345.
79 Konwick BJ, Tomy GT, Ismail N, Peterson JT, Fauver RJ, Higginbotham D, et al. Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters near and distant to a major use source. Environ Toxicol Chem 2008; 27:2011–2018.
80 Skutlarek D, Exner M, Färber H. Perfluorinated surfactants in surface and drinking waters.
Environ Sci Pollut Res Int 2006; 13:299–307.
81 Fanghi di depurazione. Produzione e gestione nelle zone interessate dalla contaminazione da PFAS — ARPA Veneto. http://www.arpa.veneto.it/arpav/paginegeneriche/documenti/fanghi%20PFAS.pdf/view (accessed 15 Sep2017).
82 Martin JW, Asher BJ, Beesoon S, Benskin JP, Ross MS. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure? J Environ Monit 2010; 12:1979.
83 Russell MH, Berti WR, Szostek B, Buck RC. Investigation of the biodegradation potential of a fluoroacrylate polymer product in aerobic soils. Environ Sci Technol 2008; 42:800–807.
84 Fraser AJ, Webster TF, Watkins DJ, Nelson JW, Stapleton HM, Calafat AM, et al.
Polyfluorinated compounds in serum linked to indoor air in office environments. Environ Sci Technol 2012; 46:1209–1215.
85 Butt CM, Berger U, Bossi R, Tomy GT. Levels and trends of poly- and perfluorinated compounds in the arctic environment. Sci Total Environ 2010; 408:2936–2965.
86 Zarfl C, Matthies M. Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull 2010; 60:1810–1814.
87 Cai M, Zhao Z, Yin Z, Ahrens L, Huang P, Cai M, et al. Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean. Environ Sci Technol 2012; 46:661–668. 88 Casal P, Zhang Y, Martin JW, Pizarro M, Jiménez B, Dachs J. Role of Snow Deposition of Perfluoroalkylated Substances at Coastal Livingston Island (Maritime Antarctica). Environ Sci Technol 2017; 51:8460–8470.
89 MacInnis JJ, French K, Muir DCG, Spencer C, Criscitiello A, De Silva AO, et al. Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic.
Environ Sci Process Impacts 2017; 19:22–30.
90 Smithwick M, Norstrom RJ, Mabury SA, Solomon K, Evans TJ, Stirling I, et al. Temporal trends of perfluoroalkyl contaminants in polar bears (Ursus maritimus) from two locations in the North American Arctic, 1972-2002. Environ Sci Technol 2006; 40:1139–1143.
91 Wang Z, Xie Z, Mi W, Möller A, Wolschke H, Ebinghaus R. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow. Environ Sci Technol 2015; 49:7770–7775.
92 Wania F. A global mass balance analysis of the source of perfluorocarboxylic acids in the Arctic Ocean. Environ Sci Technol 2007; 41:4529–4535.
93 Wild S, McLagan D, Schlabach M, Bossi R, Hawker D, Cropp R, et al. An Antarctic research station as a source of brominated and perfluorinated persistent organic pollutants to the local environment. Environ Sci Technol 2015; 49:103–112.
94 Yeung LWY, Dassuncao C, Mabury S, Sunderland EM, Zhang X, Lohmann R. Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environ Sci Technol 2017; 51:6735–6744. 95 Zhao Z, Xie Z, Möller A, Sturm R, Tang J, Zhang G, et al. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast. Environ Pollut Barking Essex 1987 2012; 170:71–77.
96 Kannan K, Corsolini S, Falandysz J, Fillmann G, Kumar KS, Loganathan BG, et al.
Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environ Sci Technol 2004; 38:4489–4495.
97 Croes K, Colles A, Koppen G, Govarts E, Bruckers L, Van de Mieroop E, et al. Persistent organic pollutants (POPs) in human milk: a biomonitoring study in rural areas of Flanders (Belgium).
Chemosphere 2012; 89:988–994.
98 Dobraca D, Israel L, McNeel S, Voss R, Wang M, Gajek R, et al. Biomonitoring in California firefighters: metals and perfluorinated chemicals. J Occup Environ Med 2015; 57:88–97. 99 Hölzer J, Midasch O, Rauchfuss K, Kraft M, Reupert R, Angerer J, et al. Biomonitoring of Perfluorinated Compounds in Children and Adults Exposed to Perfluorooctanoate-Contaminated Drinking Water. Environ Health Perspect 2008; 116:651.
100 Olsen GW. PFAS Biomonitoring in HIgher Exposed Populations. In: Toxilogical Effects of Perfluoroalkyl and Polyfluoroalkyl Substances. De Witt, JC (editor). . Humana Press; 2015. pp. 77–125. 101 Ingelido AM, Abballe A, Gemma S, Dellatte E, Iacovella N, De Angelis G, et al. Biomonitoring of perfluorinated compounds in adults exposed to contaminated drinking water in the Veneto Region, Italy.
Environ Int 2018; 110:149–159.
102 Ingelido AM, Marra V, Abballe A, Valentini S, Iacovella N, Barbieri P, et al.
Perfluorooctanesulfonate and perfluorooctanoic acid exposures of the Italian general population.
Chemosphere 2010; 80:1125–1130.
103 Caserta D, Ciardo F, Bordi G, Guerranti C, Fanello E, Perra G, et al. Correlation of Endocrine Disrupting Chemicals Serum Levels and White Blood Cells Gene Expression of Nuclear Receptors in a Population of Infertile Women. Int J Endocrinol 2013; 2013:1–7.
104 Ubel FA, Sorenson SD, Roach DE. Health status of plant workers exposed to fluorochemicals--a preliminary report. Am Ind Hyg Assoc J 1980; 41:584–589.
105 Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, et al. Accumulation of perfluorooctane sulfonate in marine mammals. Environ Sci Technol 2001; 35:1593–1598. 106 Kannan K, Franson JC, Bowerman WW, Hansen KJ, Jones PD, Giesy JP. Perfluorooctane sulfonate in fish-eating water birds including bald eagles and albatrosses. Environ Sci Technol 2001; 35:3065–3070.
107 Taniyasu S, Yamashita N, Moon H-B, Kwok KY, Lam PKS, Horii Y, et al. Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances? Environ Int 2013; 55:25–32.
108 Sun H, Li F, Zhang T, Zhang X, He N, Song Q, et al. Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: mass flows and source analysis. Water Res 2011; 45:4483–4490. 109 Falk S, Failing K, Georgii S, Brunn H, Stahl T. Tissue specific uptake and elimination of perfluoroalkyl acids (PFAAs) in adult rainbow trout (Oncorhynchus mykiss) after dietary exposure.
Chemosphere 2015; 129:150–156.
110 Brandsma SH, Smithwick M, Solomon K, Small J, de Boer J, Muir DCG. Dietary exposure of rainbow trout to 8:2 and 10:2 fluorotelomer alcohols and perfluorooctanesulfonamide: Uptake, transformation and elimination. Chemosphere 2011; 82:253–258.
111 Squadrone S, Ciccotelli V, Prearo M, Favaro L, Scanzio T, Foglini C, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy. Environ Monit Assess 2015; 187. doi:10.1007/s10661-015-4686-0
112 Renzi M, Guerranti C, Giovani A, Perra G, Focardi SE. Perfluorinated compounds: levels, trophic web enrichments and human dietary intakes in transitional water ecosystems. Mar Pollut Bull 2013; 76:146–157.
113 Yamashita N, Taniyasu S, Petrick G, Wei S, Gamo T, Lam PKS, et al. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters. Chemosphere 2008; 70:1247–1255. 114 Yamashita N, Kannan K, Taniyasu S, Horii Y, Petrick G, Gamo T. A global survey of perfluorinated acids in oceans. Mar Pollut Bull 2005; 51:658–668.
115 Giari L, Guerranti C, Perra G, Lanzoni M, Fano EA, Castaldelli G. Occurrence of perfluorooctanesulfonate and perfluorooctanoic acid and histopathology in eels from north Italian waters.
Chemosphere 2015; 118:117–123.
116 Denys S, Fraize-Frontier S, Moussa O, Le Bizec B, Veyrand B, Volatier J-L. Is the fresh water fish consumption a significant determinant of the internal exposure to perfluoroalkylated substances (PFAS)? Toxicol Lett 2014; 231:233–238.
117 Yamada A, Bemrah N, Veyrand B, Pollono C, Merlo M, Desvignes V, et al. Perfluoroalkyl acid contamination and polyunsaturated fatty acid composition of French freshwater and marine fishes. J Agric Food Chem 2014; 62:7593–7603.
118 Noorlander CW, van Leeuwen SPJ, Te Biesebeek JD, Mengelers MJB, Zeilmaker MJ. Levels of perfluorinated compounds in food and dietary intake of PFOS and PFOA in the Netherlands. J Agric Food Chem 2011; 59:7496–7505.
119 Heo J-J, Lee J-W, Kim S-K, Oh J-E. Foodstuff analyses show that seafood and water are major perfluoroalkyl acids (PFAAs) sources to humans in Korea. J Hazard Mater 2014; 279:402–409. 120 Lin AY-C, Panchangam SC, Tsai Y-T, Yu T-H. Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues.
Environ Monit Assess 2014; 186:3265–3275.
121 Liu X, Guo Z, Krebs KA, Pope RH, Roache NF. Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US. Chemosphere 2014; 98:51–57. 122 Fujii Y, Yan J, Harada KH, Hitomi T, Yang H, Wang P, et al. Levels and profiles of long-chain perfluorinated carboxylic acids in human breast milk and infant formulas in East Asia. Chemosphere 2012; 86:315–321.
123 05/16/2000: EPA and 3M ANNOUNCE PHASE OUT OF PFOS.
2000.https://yosemite.epa.gov/opa/admpress.nsf/0/33aa946e6cb11f35852568e1005246b4 (accessed 2 Dec2017).
124 European Food Safety Authority (EFSA). Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts Scientific Opinion of the Panel on Contaminants in the Food chain. EFSA J 2008; 6. doi:10.2903/j.efsa.2008.653
125 US EPA O. Fact Sheet: 2010/2015 PFOA Stewardship Program. US EPA.
2016.https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoastewardship-program (accessed 19 Feb2019).
126 Benbrahim-Tallaa L, Lauby-Secretan B, Loomis D, Guyton KZ, Grosse Y, Ghissassi FE, et al. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane sultone. Lancet Oncol 2014; 15:924–925.
127 Government of Canada E and CCC. ARCHIVED - Environment and Climate Change Canada - Acts & Regulations - PFCA Agreement. 2010.http://www.ec.gc.ca/epeepa/default.asp?lang=En&n=81AE80CE-1 (accessed 19 Feb2019).
128 Wilhelm M, Kraft M, Rauchfuss K, Hölzer J. Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the Region Sauerland, North RhineWestphalia. J Toxicol Environ Health A 2008; 71:725–733.
129 Germany and Sweden propose restrictions on six PFASs | Chemical Watch.
https://chemicalwatch.com/62729/germany-and-sweden-propose-restrictions-on-six-pfass (accessed 19 Feb2019).
130 Country information - OECD Portal on Per and Poly Fluorinated Chemicals.
http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/countryinformation/norway.htm (accessed 19 Feb2019).
131 ISS. Parere dell’Istituto Superiore di Sanità sui risultati analitici dei controlli sulle sostanze perfluorate su alimenti. 2016.https://www.regione.veneto.it/web/sanita/pfas (accessed 19 Feb2019). 132 Mazzoni M, Buffo A, Cappelli F, Pascariello S, Polesello S, Valsecchi S, et al. Perfluoroalkyl acids in fish of Italian deep lakes: Environmental and human risk assessment. Sci Total Environ 2019; 653:351–358.
133 Olsen GW, Hansen KJ, Stevenson LA, Burris JM, Mandel JH. Human donor liver and serum concentrations of perfluorooctanesulfonate and other perfluorochemicals. Environ Sci Technol 2003; 37:888–891.
134 Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL. Subchronic toxicity studies on perfluorooctanesulfonate potassium salt in cynomolgus monkeys. Toxicol Sci Off J Soc Toxicol 2002; 68:249–264.
135 Coperchini F, Awwad O, Rotondi M, Santini F, Imbriani M, Chiovato L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J Endocrinol Invest 2017; 40:105–121.
136 Yeung LWY, Guruge KS, Taniyasu S, Yamashita N, Angus PW, Herath CB. Profiles of perfluoroalkyl substances in the liver and serum of patients with liver cancer and cirrhosis in Australia.
Ecotoxicol Environ Saf 2013; 96:139–146.
137 Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, et al. Trans-placental transfer of thirteen perfluorinated compounds and relations with fetal thyroid hormones. Environ Sci Technol 2011; 45:7465–7472.
138 Guerranti C, Perra G, Corsolini S, Focardi SE. Pilot study on levels of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in selected foodstuffs and human milk from Italy. Food Chem 2013; 140:197–203.
139 Barbarossa A, Masetti R, Gazzotti T, Zama D, Astolfi A, Veyrand B, et al. Perfluoroalkyl substances in human milk: A first survey in Italy. Environ Int 2013; 51:27–30.
140 Heiden D. The breast-feeding dilemma. West J Med 2000; 173:144.
141 Mogensen UB, Grandjean P, Nielsen F, Weihe P, Budtz-Jørgensen E. Breastfeeding as an Exposure Pathway for Perfluorinated Alkylates. Environ Sci Technol 2015; 49:10466–10473.
142 Grandjean P, Jensen AA. BREASTFEEDING AND THE WEANLING’S DILEMMA. Am J Public Health 2004; 94:1075.
143 Section on Breastfeeding. Breastfeeding and the use of human milk. Pediatrics 2012; 129:e827841.
144 Salute M della. Allattamento. http://www.salute.gov.it/portale/salute/p1_5.jsp?id=78&area=Vivi_sano (accessed 1 Dec2018).
145 Paustenbach DJ, Panko JM, Scott PK, Unice KM. A methodology for estimating human exposure to perfluorooctanoic acid (PFOA): a retrospective exposure assessment of a community (1951-2003). J Toxicol Environ Health A 2007; 70:28–57.
146 C8 Science Panel Website. 2017.http://www.c8sciencepanel.org/ (accessed 20 Feb2019).
147 Oliaei F, Kriens D, Weber R, Watson A. PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environ Sci Pollut Res 2013; 20:1977–1992.
148 Hoffman Kate, Webster Thomas F., Bartell Scott M., Weisskopf Marc G., Fletcher Tony, Vieira
Verónica M. Private Drinking Water Wells as a Source of Exposure to Perfluorooctanoic Acid (PFOA) in Communities Surrounding a Fluoropolymer Production Facility. Environ Health Perspect 2011; 119:92– 97.
149 David A. Up to 110 Million Americans Could Have PFAS-Contaminated Drinking Water, EPA Testing Data Kept Secret. EWG. 2018.https://www.ewg.org/research/report-110-million-americans-couldhave-pfas-contaminated-drinking-water (accessed 24 Feb2019).
150 Kröfges P, Skutlarek D, Faber, H, Baitinger C, Gödeke C, Weber R. PFOS/PFOA contaminated megasites in Germany polluting the drinking water supply of millions of people. Organohalogen Compd 2007; 69.
151 Viberg H, Eriksson P. Perfluorooctane Sulfonate and Perfluorooctanoic Acid. In: Reproductive and Developmental Toxicology.Elsevier; 2017. pp. 811–827.
152 Harada K, Inoue K, Morikawa A, Yoshinaga T, Saito N, Koizumi A. Renal clearance of perfluorooctane sulfonate and perfluorooctanoate in humans and their species-specific excretion. Environ Res 2005; 99:253–261.
153 Chen Y-M, Guo L-H. Fluorescence study on site-specific binding of perfluoroalkyl acids to human serum albumin. Arch Toxicol 2009; 83:255–261.
154 Zhang X, Chen L, Fei X-C, Ma Y-S, Gao H-W. Binding of PFOS to serum albumin and DNA: insight into the molecular toxicity of perfluorochemicals. BMC Mol Biol 2009; 10:16.
155 von Ehrenstein OS, Fenton SE, Kato K, Kuklenyik Z, Calafat AM, Hines EP. Polyfluoroalkyl chemicals in the serum and milk of breastfeeding women. Reprod Toxicol Elmsford N 2009; 27:239–245.
156 Viberg H, Eriksson P. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). In:
Reproductive and Developmental Toxicology.Elsevier; 2011. pp. 623–635.
157 Paul AG, Jones KC, Sweetman AJ. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol 2009; 43:386–392.
158 D’Hollander W, de Voogt P, De Coen W, Bervoets L. Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol 2010; 208:179–215.
159 COMMITTEE ON TOXICITY OF CH EMICALS IN FOOD, CONSUMER PRODUCTS AND
THE ENVIRONMENT. 2006.https://cot.food.gov.uk/sites/default/files/cot/tox200922.pdf (accessed 28 Jul2017).
160 US EPA O. Provisional Health Advisories for Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS). US EPA. 2015.https://www.epa.gov/dwstandardsregulations/provisional-healthadvisories-perfluorooctanoic-acid-pfoa-and-perfluorooctane (accessed 20 Feb2019).
161 Butenhoff JL, Kennedy GL, Chang S-C, Olsen GW. Chronic dietary toxicity and carcinogenicity study with ammonium perfluorooctanoate in Sprague–Dawley rats. Toxicology 2012; 298:1–13. 162 ISS. Ritrovamento di sostanze perfluorurate nele acque superficiali e potabili della provincia di VIcenza e comuni limitrofi. Prot 07/07/2013 n. 00022264. ; 2013.
https://sian.ulss20.verona.it/docs/Sian/IgieneNutrizione/Acque/Pfas/ISS_perfluorurati_a_Vicenza_0613.p df (accessed 8 Aug2017).
163 ISS. Acque destinate al consumo umano contenente sostanze perflorurate nella provincia di Vicenza e comuni limitrofi. Prot 16/01/2014 - 0001584.
2014.https://sian.ulss20.verona.it/data/42/Informazioni/Aree/Acqua/Monitoraggio/Pfas/6-Parere-ISS-prot1584-del-16-01-2014.PDF (accessed 20 Aug2017).
164 Dalsager L, Christensen N, Husby S, Kyhl H, Nielsen F, Høst A, et al. Association between prenatal exposure to perfluorinated compounds and symptoms of infections at age 1–4years among 359 children in the Odense Child Cohort. Environ Int 2016; 96:58–64.
165 Grandjean P, Andersen EW, Budtz-Jørgensen E, Nielsen F, Mølbak K, Weihe P, et al. Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds. JAMA 2012; 307. doi:10.1001/jama.2011.2034
166 Grandjean P, Budtz-Jørgensen E. Immunotoxicity of perfluorinated alkylates: calculation of benchmark doses based on serum concentrations in children. Environ Health 2013; 12:35.
167 Zeilmaker MJ, Janssen P, Versteegh A, Van Pul A, De Vries W, Bokkers B, et al. Risicoschatting emissie PFOA voor omwonenden. Rijksinstituut voor Volksgezondheid en Milieu; 2016.
168 US EPA. Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS). 2016.
169 EFSA CONTAM DRAFT Opinion on PFOS_PFOA in food_Adopted pre-edit Version 2. 2017. 170 Trinkwasserkommission. Provisional evaluation of PFT in drinking water with the guide sub- stances perfluorooctanoic acid (PFO A) and perfluorooctane sulfonate (PFOS) as examples.
21/06/20016.https://www.umweltbundesamt.de/sites/default/files/medien/pdfs/pft-in-drinking-water.pdf (accessed 19 Sep2017).
171 Yao X, Zhong L. Genotoxic risk and oxidative DNA damage in HepG2 cells exposed to perfluorooctanoic acid. Mutat Res 2005; 587:38–44.
172 Unhappy meal. The European Food Safety Authority’s independence problem. Corp. Eur. Obs. 2013.https://corporateeurope.org/efsa/2013/10/unhappy-meal-european-food-safety-authoritysindependence-problem (accessed 20 Feb2019).
173 Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, et al. Toxicity of ammonium perfluorooctanoate in male cynomolgus monkeys after oral dosing for 6 months. Toxicol Sci Off J Soc Toxicol 2002; 69:244–257.
174 Ue, ok a revisione direttiva acqua potabile - Ambiente & Energia. ANSA.it.
2019.http://www.ansa.it/canale_ambiente/notizie/acqua/2019/03/05/ue-ok-a-revisione-direttiva-acquapotabile_ff23b9ac-dac0-4508-aa76-04ba567543fb.html (accessed 7 Mar2019).
175 Letter to EPA re: Perfluorooctanoic Acid (PFOA) Risk Assessment Review Panel | Center for Science in the Public Interest. https://cspinet.org/resource/letter-epa-re-perfluorooctanoic-acid-pfoa-riskassessment-review-panel (accessed 20 Feb2019).
176 Biegel LB, Hurtt ME, Frame SR, O’Connor JC, Cook JC. Mechanisms of extrahepatic tumor induction by peroxisome proliferators in male CD rats. Toxicol Sci Off J Soc Toxicol 2001; 60:44–55. 177 Draft Risk Assessment of the Potential Human Health Effects Associated with Exposure to Perfluorooctanoic Acid and Its Salts. Office of Pollution Prevention and Toxics..pdf.
178 SAB PAnel. SAB Review of EPA’s Draft Risk Assessment of Potential Human Health Effects Associated with PFOA and Its Salts.pdf. 2006.
179 Corsini E, Avogadro A, Galbiati V, dell’Agli M, Marinovich M, Galli CL, et al. In vitro evaluation of the immunotoxic potential of perfluorinated compounds (PFCs). Toxicol Appl Pharmacol 2011; 250:108–116.
180 Grandjean P. Delayed discovery, dissemination, and decisions on intervention in environmental health: a case study on immunotoxicity of perfluorinated alkylate substances. Environ Health 2018; 17:62.
181 Apel P, Angerer J, Wilhelm M, Kolossa-Gehring M. New HBM values for emerging substances, inventory of reference and HBM values in force, and working principles of the German Human Biomonitoring Commission. Int J Hyg Environ Health 2017; 220:152–166.
182 Frisbee SJ, Brooks AP, Maher A, Flensborg P, Arnold S, Fletcher T, et al. The C8 Health Project:
Design, Methods, and Participants. Environ Health Perspect 2009; 117:1873–1882.
183 EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen HK, Alexander J,
Barregård L, Bignami M, Brüschweiler B, et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16.
doi:10.2903/j.efsa.2018.5194
184 Immunotoxicity Associated with Exposure to Perfluorooctanoic Acid or Perfluorooctane Sulfonate- NTP Monograph.
185 He X, Liu Y, Xu B, Gu L, Tang W. PFOA is associated with diabetes and metabolic alteration in US men: National Health and Nutrition Examination Survey 2003-2012. Sci Total Environ 2018; 625:566–574.
186 Sun Q, Zong G, Valvi D, Nielsen F, Coull B, Grandjean P. Plasma Concentrations of
Perfluoroalkyl Substances and Risk of Type 2 Diabetes: A Prospective Investigation among U.S. Women.
Environ Health Perspect 2018; 126:037001.
187 Zhang C, Sundaram R, Maisog J, Calafat AM, Barr DB, Buck Louis GM. A prospective study of prepregnancy serum concentrations of perfluorochemicals and the risk of gestational diabetes. Fertil Steril 2015; 103:184–189.
188 Rahman ML, Zhang C, Smarr MM, Lee S, Honda M, Kannan K, et al. Persistent organic pollutants and gestational diabetes: A multi-center prospective cohort study of healthy US women.
Environ Int 2019; 124:249–258.
189 Mancini FR, Rajaobelina K, Praud D, Dow C, Antignac JP, Kvaskoff M, et al. Nonlinear associations between dietary exposures to perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) and type 2 diabetes risk in women: Findings from the E3N cohort study. Int J Hyg Environ Health 2018; 221:1054–1060.
190 Domazet SL, Grøntved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal Associations of Exposure to Perfluoroalkylated Substances in Childhood and Adolescence and Indicators of Adiposity and Glucose Metabolism 6 and 12 Years Later: The European Youth Heart Study. Diabetes Care 2016; 39:1745–1751.
191 Timmermann CAG, Rossing LI, Grøntved A, Ried-Larsen M, Dalgård C, Andersen LB, et al. Adiposity and glycemic control in children exposed to perfluorinated compounds. J Clin Endocrinol Metab 2014; 99:E608-614.
192 Rappazzo KM, Coffman E, Hines EP. Exposure to Perfluorinated Alkyl Substances and Health
Outcomes in Children: A Systematic Review of the Epidemiologic Literature. Int J Environ Res Public Health 2017; 14. doi:10.3390/ijerph14070691
193 Ballesteros V, Costa O, Iñiguez C, Fletcher T, Ballester F, Lopez-Espinosa M-J. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. Environ Int 2017; 99:15–28.
194 Donat-Vargas C, Bergdahl IA, Tornevi A, Wennberg M, Sommar J, Koponen J, et al. Associations between repeated measure of plasma perfluoroalkyl substances and cardiometabolic risk factors. Environ Int 2019; 124:58–65.
195 Koshy TT, Attina TM, Ghassabian A, Gilbert J, Burdine LK, Marmor M, et al. Serum perfluoroalkyl substances and cardiometabolic consequences in adolescents exposed to the World Trade Center disaster and a matched comparison group. Environ Int 2017; 109:128–135.
196 Manzano-Salgado CB, Casas M, Lopez-Espinosa M-J, Ballester F, Iñiguez C, Martinez D, et al. Prenatal Exposure to Perfluoroalkyl Substances and Cardiometabolic Risk in Children from the Spanish INMA Birth Cohort Study. Environ Health Perspect 2017; 125:097018.
197 Huang M, Jiao J, Zhuang P, Chen X, Wang J, Zhang Y. Serum polyfluoroalkyl chemicals are associated with risk of cardiovascular diseases in national US population. Environ Int 2018; 119:37–46.
198 Shankar A, Xiao J, Ducatman A. Perfluorooctanoic acid and cardiovascular disease in US adults.
Arch Intern Med 2012; 172:1397–1403.
199 Mastrantonio M, Bai E, Uccelli R, Cordiano V, Screpanti A, Crosignani P. Drinking water contamination from perfluoroalkyl substances (PFAS): an ecological mortality study in the Veneto Region, Italy. Eur J Public Health 2018; 28:180–185.
200 IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer. Some chemicals used as solvents and in polymer manufacture. ; 2017. http://www.ncbi.nlm.nih.gov/books/NBK436263/ (accessed 3 Apr2019).
201 Brodsky D, Christou H. Current concepts in intrauterine growth restriction. J Intensive Care Med 2004; 19:307–319.
202 Malin G, Morris R, Riley R, Teune M, Khan K. When is birthweight at term abnormally low? A systematic review and meta-analysis of the association and predictive ability of current birthweight standards for neonatal outcomes. BJOG Int J Obstet Gynaecol 2014; 121:515–526.
203 Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A. Morbidity and mortality among verylow-birth-weight neonates with intrauterine growth restriction. The Vermont Oxford Network. Am J Obstet Gynecol 2000; 182:198–206.
204 Maso G, Jayawardane MAMM, Alberico S, Piccoli M, Senanayake HM. The implications of diagnosis of small for gestational age fetuses using European and South Asian growth charts: an outcome-based comparative study. ScientificWorldJournal 2014; 2014:474809.
205 de Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 2006; 46:4–14.
206 Eichenwald EC, Stark AR. Management and outcomes of very low birth weight. N Engl J Med 2008; 358:1700–1711.
207 Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect 2013; 121:1313–1318.
208 Vieira VM, Hoffman K, Shin H-M, Weinberg JM, Webster TF, Fletcher T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect 2013; 121:318–323.
209 GIrardi P, Merler E. Valutazione degli effetti a lungo termine sulla salute dei dipendenti di un’azienda chimica che ha prodotto intermedi per l’industria agro- alimentare, l’industria farmaceutica e derivati perfluorurati (PFOA, PFOS).
2017.http://repository.regione.veneto.it/public/ee9ba54d89c499264600f8c1bff85a83.php?lang=it&dl=true (accessed 19 Aug2017).
210 Bukowski R. Fetal growth potential and pregnancy outcome. Semin Perinatol 2004; 28:51–58. 211 Botero D, Lifshitz F. Intrauterine growth retardation and long-term effects on growth. Curr Opin Pediatr 1999; 11:340–347.
212 Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, et al. The Navigation Guide— Evidence-Based Medicine Meets Environmental Health: Systematic Review of Human Evidence for PFOA Effects on Fetal Growth. Environ Health Perspect Published Online First: 25 June 2014.
doi:10.1289/ehp.1307893
213 Lauritzen HB, Larose TL, Øien T, Sandanger TM, Odland JØ, van de Bor M, et al. Maternal serum levels of perfluoroalkyl substances and organochlorines and indices of fetal growth: a Scandinavian case-cohort study. Pediatr Res 2017; 81:33–42.
214 Maisonet M, Terrell ML, McGeehin MA, Christensen KY, Holmes A, Calafat AM, et al. Maternal concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in British girls. Environ Health Perspect 2012; 120:1432–1437.
215 Fei C, McLaughlin JK, Tarone RE, Olsen J. Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect 2007; 115:1677–1682.
216 Lenters V, Portengen L, Rignell-Hydbom A, Jönsson BAG, Lindh CH, Piersma AH, et al.
Prenatal Phthalate, Perfluoroalkyl Acid, and Organochlorine Exposures and Term Birth Weight in Three Birth Cohorts: Multi-Pollutant Models Based on Elastic Net Regression. Environ Health Perspect 2016; 124:365–372.
217 Apelberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, et al. Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environ Health Perspect 2007; 115:1670–1676.
218 Nolan LA, Nolan JM, Shofer FS, Rodway NV, Emmett EA. The relationship between birth weight, gestational age and perfluorooctanoic acid (PFOA)-contaminated public drinking water. Reprod Toxicol Elmsford N 2009; 27:231–238.
219 Savitz DA, Stein CR, Bartell SM, Elston B, Gong J, Shin H-M, et al. Perfluorooctanoic acid exposure and pregnancy outcome in a highly exposed community. Epidemiol Camb Mass 2012; 23:386– 392.
220 Stein CR, Savitz DA, Dougan M. Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy outcome. Am J Epidemiol 2009; 170:837–846.
221 Savitz DA, Stein CR, Elston B, Wellenius GA, Bartell SM, Shin H-M, et al. Relationship of perfluorooctanoic acid exposure to pregnancy outcome based on birth records in the mid-Ohio Valley.
Environ Health Perspect 2012; 120:1201–1207.
222 Bellinger DC. Comparing the population neurodevelopmental burdens associated with children’s exposures to environmental chemicals and other risk factors. Neurotoxicology 2012; 33:641–643. 223 Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-2004. Environ Health Perspect 2011; 119:878–885.
224 Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, et al. The Navigation Guide— Evidence-Based Medicine Meets Environmental Health: Integration of Animal and Human Evidence for PFOA Effects on Fetal Growth. Environ Health Perspect Published Online First: 25 June 2014. doi:10.1289/ehp.1307923
225 Olsen GW, Zobel LR. Assessment of lipid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) concentrations in fluorochemical production workers. Int Arch Occup Environ Health 2007; 81:231–246.
226 Sakr CJ, Kreckmann KH, Green JW, Gillies PJ, Reynolds JL, Leonard RC. Cross-sectional study of lipids and liver enzymes related to a serum biomarker of exposure (ammonium perfluorooctanoate or APFO) as part of a general health survey in a cohort of occupationally exposed workers. J Occup Environ Med 2007; 49:1086–1096.
227 Sakr CJ, Leonard RC, Kreckmann KH, Slade MD, Cullen MR. Longitudinal study of serum lipids and liver enzymes in workers with occupational exposure to ammonium perfluorooctanoate. J Occup Environ Med 2007; 49:872–879.
228 Costa G, Sartori S, Consonni D. Thirty years of medical surveillance in perfluooctanoic acid production workers. J Occup Environ Med 2009; 51:364–372.
229 Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ Health Perspect 2014; 122:1299–1305. 230 Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect 2010; 118:197– 202.
231 Melzer D, Rice N, Depledge MH, Henley WE, Galloway TS. Association between Serum Perfluorooctanoic Acid (PFOA) and Thyroid Disease in the U.S. National Health and Nutrition Examination Survey. Environ Health Perspect 2010; 118:686–692.
232 Lopez-Espinosa M-J, Mondal D, Armstrong B, Bloom MS, Fletcher T. Thyroid Function and Perfluoroalkyl Acids in Children Living Near a Chemical Plant. Environ Health Perspect 2012; 120:1036–1041.
233 Winquist A, Steenland K. Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts. Epidemiol Camb Mass 2014; 25:255–264.
234 Wen L-L, Lin L-Y, Su T-C, Chen P-C, Lin C-Y. Association Between Serum Perfluorinated Chemicals and Thyroid Function in U.S. Adults: The National Health and Nutrition Examination Survey 2007–2010. J Clin Endocrinol Metab 2013; 98:E1456–E1464.
235 McLachlan MS, Holmström KE, Reth M, Berger U. Riverine Discharge of Perfluorinated Carboxylates from the European Continent. Environ Sci Technol 2007; 41:7260–7265.
236 Polesello S, Pagnotta R, Marziali L, Patrolecco L, Rusconi M, Stefani F, et al. Realizzazione di uno studio di valutazione del Rischio ambientale e sanitario associato alla contaminazione da sostanze perfluoroalchiliche (PFAS) nel Bacino del Po e nei principali bacini fluviali italiani - Relazione finale ottobre 2013.
2013.http://www.minambiente.it/sites/default/files/archivio/allegati/reach/progettoPFAS_ottobre2013.pdf (accessed 29 Aug2017).
237 Kato K, Wong L-Y, Jia LT, Kuklenyik Z, Calafat AM. Trends in exposure to polyfluoroalkyl chemicals in the U.S. Population: 1999-2008. Environ Sci Technol 2011; 45:8037–8045.
238 Regione Veneto - Tutela acque destinate al consumo umano.
https://www.regione.veneto.it/web/sanita/tutela-acque-destinate-al-consumo-umano (accessed 21 Jul2018).
239 Cordiano V, Storti M, Bai E, Crosignani P. [Perfluoroalkyl substances in groundwater in Veneto Region (Northern Italy): a new Seveso case?]. Epidemiol Prev 2017; 41:148.
240 Registro Nascita - Coordinamento Malattie Rare Regione Veneto. Studio esiti materni e neonatali - PFAS e malformazioni Veneto.pdf.
https://www.snop.it/attachments/article/669/PFAS%20e%20malformazioni%20%20%20Veneto.pdf (accessed 19 Aug2017).
241 Regione Veneto. Approvazione II livello del “Protocollo di screening della popolazione veneta esposta a sostanze perfluoroalchiliche” e del “Trattamento di Soggetti Con Alte Concentrazioni di PFAS”. 2017.https://bur.regione.veneto.it/BurvServices/pubblica/DettaglioDgr.aspx?id=347690 (accessed 29 Aug2017).
242 Schwartz J, Padmanabhan A, Aqui N, Balogun RA, Connelly-Smith L, Delaney M, et al.
Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue. J Clin Apheresis 2016; 31:149–338.
243 Fiorin L. Cordiano critica le terapie Dubbi sulla plasmaferesi - Provincia - L’Arena.
2017.http://www.larena.it/home/provincia/cordiano-critica-le-terapiedubbi-sulla-plasmaferesi-1.5817620 (accessed 16 Sep2017).
244 Bertola F. Plasmaferesi - Aspetti da esplorare - Relazione tenuta al Convegno degli Ordini dei Medici di VI e Vr a Lonigo (VI) il 28/10(2017. Google Docs.
2017.https://drive.google.com/file/d/1W0sQPR3qyUvtGW8W1wbLxOFkbT4L899S/view?usp=sharing&usp =embed_facebook (accessed 16 Nov2017).
245 Plasmaferesi in Veneto. Lorenzin: “Nessuna evidenza scientifica su possibilità di rimuovere PFAS o PFOA attraverso uso plasmaferesi” - Quotidiano Sanità.
2017.http://www.quotidianosanita.it/governo-e-parlamento/articolo.php?articolo_id=56981 (accessed 18 Dec2017).
246 Pfas, “pulire il sangue” con la plasmaferesi: scontro tra Veneto e Istituto superiore di sanità.
2017.http://www.repubblica.it/salute/2017/12/15/news/pfas_scontro_tra_veneto_e_istituto_superiore_di_s anita_sulla_procedura_per_pulire_il_sangue_-184250246/ (accessed 18 Dec2017).
247 Genuis SJ, Liu Y, Genuis QIT, Martin JW. Phlebotomy treatment for elimination of perfluoroalkyl acids in a highly exposed family: a retrospective case-series. PloS One 2014; 9:e114295. 248 Genuis SJ, Birkholz D, Ralitsch M, Thibault N. Human detoxification of perfluorinated compounds. Public Health 2010; 124:367–375.
249 Genuis SJ, Sears ME, Schwalfenberg G, Hope J, Bernhoft R. Clinical Detoxification: Elimination of Persistent Toxicants from the Human Body. Sci World J Published Online First: 2013.
doi:10.1155/2013/238347
250 Beesoon S, Webster GM, Shoeib M, Harner T, Benskin JP, Martin JW. Isomer profiles of perfluorochemicals in matched maternal, cord, and house dust samples: manufacturing sources and transplacental transfer. Environ Health Perspect 2011; 119:1659–1664.
251 Cao W, Liu X, Liu X, Zhou Y, Zhang X, Tian H, et al. Perfluoroalkyl substances in umbilical cord serum and gestational and postnatal growth in a Chinese birth cohort. Environ Int 2018; 116:197–205. 252 Cariou R, Veyrand B, Yamada A, Berrebi A, Zalko D, Durand S, et al. Perfluoroalkyl acid (PFAA) levels and profiles in breast milk, maternal and cord serum of French women and their newborns.
Environ Int 2015; 84:71–81.
253 Chen M-H, Ha E-H, Liao H-F, Jeng S-F, Su Y-N, Wen T-W, et al. Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiol Camb Mass 2013; 24:800–808. 254 Lee YJ, Kim M-K, Bae J, Yang J-H. Concentrations of perfluoroalkyl compounds in maternal and umbilical cord sera and birth outcomes in Korea. Chemosphere 2013; 90:1603–1609.
255 Johnson PI, Sutton P, Atchley DS, Koustas E, Lam J, Sen S, et al. The Navigation Guide— Evidence-Based Medicine Meets Environmental Health: Systematic Review of Human Evidence for PFOA Effects on Fetal Growth. Environ Health Perspect 2014; 122:1028–1039.




Commenti